Inverse Kinematics Guide

Some Help with Inverse Kinematics

What are Inverse Kinematics?

- Inverse Kinematics translates from an end effector position and orientation to joint angles
- $T_{0n} \rightarrow \theta_1, \theta_2, \dots \theta_n$
 - $(x_{grip}, y_{grip}, z_{grip}, \theta_{yaw}, \theta_{pitch}, \theta_{roll}) \rightarrow \theta_1, \theta_2, \dots \theta_n$
- We will be doing this analytically using geometry

Why do we care about Inverse Kinematics?

- Inverse Kinematics is much more useful than Forward Kinematics for what we wish to do
- We control the robot by joint angles, but we live and operate in a 3D – x-y-z world.
- Could you describe a straight-line in terms of $\theta_1, \theta_2, \theta_3, \theta_4 \dots$? It is pretty hard to do.
- We need a way to translate our x-y-z world to the joint angles the robot needs
- Inverse Kinematics is the tool that allows us to do that.

Background

- In class you have studied Numerical Inverse Kinematics which uses numerical methods to solve the problem
- In lab we will find Geometric Inverse Kinematics. We will use geometric relationships to find formulas to solve the problem
- With Forward Kinematics, there is a single solution to the problem, but with Inverse Kinematics, there are often multiple solutions
- We deal with multiple solutions by imposing constraints on our arms
- Sometimes there are multiple solutions to an angle, but not all solutions are good
 - Some solutions fail in certain configurations.

Useful Tools

- Basic Trigonometry sines, cosines, and tangents
- Law of Cosines

$$c^2 = a^2 + b^2 - 2ab\cos C$$

- atan2(y, x)
 - Takes into account signs of x and y in arctan(y/x) and places angle in correct quadrant

Set up

- This is a simple robot, so we only need to worry about Elbow Up or Elbow Down configurations
 - Let's solve for Elbow Up
- Again, because we have a simple design, the solution order is not important
 - We will solve for θ_1 , then θ_2 , and finally θ_3 .
 - It is important to know what information you have available, so you don't solve for θ_1 in terms of θ_2 and θ_2 in terms of θ_1 .

We want θ_1 , what can we do?

Top View (x-y plane)

One useful technique is to project the robot on different planes to eliminate confusing details. Here we are looking down on the robot and at the x-y plane. We have placed the robot in an arbitrary configuration so our solutions are universal, but we still have take care that we can deal with the whole workspace.

Top View (x-y plane)

Given that we know x and y, it is logical to use an arctan to solve this problem. We use the atan2 function in computing to deal with how tangent behaves in different quadrants.

Solution: $\theta_1 = atan2(y, x)$

What lengths and angles do we know in this view?

Summary of the Solution

Solution:

 θ_1 = atan2(y, x) d = z - 10 $R^2 = x^2 + y^2 + d^2$ $\alpha = \arcsin(d/R)$ $\beta = \arccos((R^2 + 15^2 - 13^2)/(2*15*R))$ $\theta_2 = \alpha + \beta$ $\gamma = \arccos((15^2 + 13^2 - R^2)/(2*15*13))$ $\theta_3 = \pi - \gamma$

We now have a solution that can calculate $\theta_1, \theta_2, \theta_3$ given $(x_{grip}, y_{grip}, z_{grip})$.

