
Inverse Kinematics Guide
Some Help with Inverse Kinematics



What are Inverse Kinematics?

• Inverse Kinematics translates from an end effector position and 
orientation to joint angles

• 𝑇0𝑛 → 𝜃1, 𝜃2, … 𝜃𝑛
• (𝑥𝑔𝑟𝑖𝑝, 𝑦𝑔𝑟𝑖𝑝, 𝑧𝑔𝑟𝑖𝑝, 𝜃𝑦𝑎𝑤 , 𝜃𝑝𝑖𝑡𝑐ℎ, 𝜃𝑟𝑜𝑙𝑙) → 𝜃1, 𝜃2, … 𝜃𝑛

• We will be doing this analytically using geometry



Why do we care about Inverse Kinematics?

• Inverse Kinematics is much more useful than Forward Kinematics for 
what we wish to do

• We control the robot by joint angles, but we live and operate in a 3D 
– x-y-z world.

• Could you describe a straight-line in terms of 𝜃1, 𝜃2, 𝜃3, 𝜃4…?  It is 
pretty hard to do.

• We need a way to translate our x-y-z world to the joint angles the 
robot needs

• Inverse Kinematics is the tool that allows us to do that.



Background

• In class you have studied Numerical Inverse Kinematics which uses 
numerical methods to solve the problem

• In lab we will find Geometric Inverse Kinematics.  We will use 
geometric relationships to find formulas to solve the problem

• With Forward Kinematics, there is a single solution to the problem, 
but with Inverse Kinematics, there are often multiple solutions

• We deal with multiple solutions by imposing constraints on our arms

• Sometimes there are multiple solutions to an angle, but not all 
solutions are good
• Some solutions fail in certain configurations.



Useful Tools

• Basic Trigonometry – sines, cosines, and tangents

• Law of Cosines

• atan2(y, x)
• Takes into account signs of x and y in arctan(y/x) and places angle in correct quadrant
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This is our given.

Our goal:
(𝑥𝑔𝑟𝑖𝑝, 𝑦𝑔𝑟𝑖𝑝, 𝑧𝑔𝑟𝑖𝑝) → 𝜃1, 𝜃2, 𝜃3



Set up

• This is a simple robot, so we only need to worry about Elbow Up or 
Elbow Down configurations
• Let’s solve for Elbow Up

• Again, because we have a simple design, the solution order is not 
important
• We will solve for 𝜃1, then 𝜃2, and finally 𝜃3.

• It is important to know what information you have available, so you don’t 
solve for 𝜃1 in terms of 𝜃2 and 𝜃2 in terms of 𝜃1.

Elbow Up

Elbow Down



Top View
(x-y plane)

(x, y)

We want 𝜃1, what can we do?

One useful technique is to project the 
robot on different planes to eliminate 
confusing details.  Here we are looking 
down on the robot and at the x-y 
plane.  We have placed the robot in an 
arbitrary configuration so our solutions 
are universal, but we still have take 
care that we can deal with the whole 
workspace.

𝜃1



Top View
(x-y plane)

(x, y)

Given that we know x and y, it is 
logical to use an arctan to solve 
this problem.  We use the atan2
function in computing to deal 
with how tangent behaves in 
different quadrants.

Solution:
𝜃1 = atan2(y, x)

𝜃1



Table Top

“Side” View
What plane is this?

What lengths and angles do we know in this view?

(x,y,z) We now look a different 
plane of the robot.  This 
allows us to isolate 𝜃2
and 𝜃3.  We want to 
start by putting in the 
known information.



Table Top

(x,y,z)
𝜃2

𝜃3

We can add in the angles 
- 𝜃2 and 𝜃3 and the 
lengths of the links.

“Side” View
1

0
cm



Table Top

“Side” View

(x,y,z)
𝜃2

𝜃3

We can split up the area 
and create more 
triangles to work with.  

1
0
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Table Top

“Side” View

(x,y,z)
𝜃2

𝜃3

d = z - 10

10cm

Even with only (x, y, z) 
and the construction of 
the robot, we know a lot 
of information.
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Table Top

“Side” View

(x,y,z)
𝜃2

𝜃3

α
d = z - 10

Let’s use this 
information to find α. 

Solution:
α = arcsin(d/R)



Table Top

“Side” View

(x,y,z)
𝜃2

𝜃3

α
β

Now we know α, if we 
could find β we would 
know 𝜃2. 

Solution:
Law of Cosines
β = arccos((R2 +152 – 132)/(2*15*R))



Table Top

“Side” View

(x,y,z)
𝜃2

𝜃3

α
β

Solution:
𝜃2=α + β

Does this change if the end 
effector is below the red 
line?  If 𝜃2 is negative?



Table Top

“Side” View

(x,y,z)
𝜃2

𝜃3

γ
Now if we know γ, we 
could know 𝜃3. 

Solution:
Law of Cosines
γ = arccos((152 + 132 -R2)/(2*15*13))



Table Top

“Side” View

(x,y,z)
𝜃2

𝜃3

γ

Solution:
𝜃3=π - γ



Summary of the Solution

Solution:
𝜃1 = atan2(y, x)
d = z - 10
R2 = x2+y2+d2

α = arcsin(d/R)
β = arccos((R2 +152 – 132)/(2*15*R))
𝜃2 = α + β
γ = arccos((152 + 132 - R2)/(2*15*13))
𝜃3 = π - γ

We now have a solution that can calculate 
𝜃1, 𝜃2, 𝜃3 given (𝑥𝑔𝑟𝑖𝑝, 𝑦𝑔𝑟𝑖𝑝, 𝑧𝑔𝑟𝑖𝑝).
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“Side” View
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For Reference


