Inverse Kinematics Guide

Some Help with Inverse Kinematics

What are Inverse Kinematics?

- Inverse Kinematics translates from an end effector position and orientation to joint angles
- $T_{0 n} \rightarrow \theta_{1}, \theta_{2}, \ldots \theta_{n}$
- $\left(x_{\text {grip }}, y_{\text {grip }}, z_{\text {grip }}, \theta_{\text {yaw }}, \theta_{\text {pitch }}, \theta_{\text {roll }}\right) \rightarrow \theta_{1}, \theta_{2}, \ldots \theta_{n}$
- We will be doing this analytically using geometry

Why do we care about Inverse Kinematics?

- Inverse Kinematics is much more useful than Forward Kinematics for what we wish to do
- We control the robot by joint angles, but we live and operate in a 3D - x-y-z world.
- Could you describe a straight-line in terms of $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4} \ldots$? It is pretty hard to do.
- We need a way to translate our $x-y-z$ world to the joint angles the robot needs
- Inverse Kinematics is the tool that allows us to do that.

Background

- In class you have studied Numerical Inverse Kinematics which uses numerical methods to solve the problem
- In lab we will find Geometric Inverse Kinematics. We will use geometric relationships to find formulas to solve the problem
- With Forward Kinematics, there is a single solution to the problem, but with Inverse Kinematics, there are often multiple solutions
- We deal with multiple solutions by imposing constraints on our arms
- Sometimes there are multiple solutions to an angle, but not all solutions are good
- Some solutions fail in certain configurations.

Useful Tools

- Basic Trigonometry - sines, cosines, and tangents
- Law of Cosines

$$
c^{2}=a^{2}+b^{2}-2 a b \cos C
$$

- atan2 (y, x)
- Takes into account signs of x and y in $\arctan (y / x)$ and places angle in correct quadrant

$$
\begin{aligned}
& \text { Our goal: } \\
& \left(x_{\text {grip }}, y_{\text {grip }}, z_{\text {grip }}\right) \rightarrow \theta_{1}, \theta_{2}, \theta_{3}
\end{aligned}
$$

Set up

Elbow Up

- This is a simple robot, so we only need to worry about Elbow Up or Elbow Down configurations
- Let's solve for Elbow Up
- Again, because we have a simple design, the solution order is not important
- We will solve for θ_{1}, then θ_{2}, and finally θ_{3}.
- It is important to know what information you have available, so you don't solve for θ_{1} in terms of θ_{2} and θ_{2} in terms of θ_{1}.

We want θ_{1}, what can we do?

Top View (x-y plane)

One useful technique is to project the robot on different planes to eliminate confusing details. Here we are looking down on the robot and at the $x-y$ plane. We have placed the robot in an arbitrary configuration so our solutions are universal, but we still have take care that we can deal with the whole workspace.

Top View (x-y plane)

Given that we know x and y, it is logical to use an arctan to solve this problem. We use the atan2 function in computing to deal with how tangent behaves in different quadrants.

Solution: $\theta_{1}=\operatorname{atan} 2(y, x)$

"Side" View

What plane is this?

What lengths and angles do we know in this view?

"Side" View

We can split up the area and create more triangles to work with.

"Side" View

"Side" View

(x, y, z)
Now we know α, if we could find β we would know θ_{2}.

Solution:

Law of Cosines
$\beta=\arccos \left(\left(R^{2}+15^{2}-13^{2}\right) /\left(2^{*} 15^{*} R\right)\right)$
Table Top

"Side" View

Solution:
 $\theta_{2}=\alpha+\beta$

Does this change if the end effector is below the red line? If θ_{2} is negative?

"Side" View

(x, y, z)
Now if we know γ, we could know θ_{3}.

Solution:

Law of Cosines
$\gamma=\arccos \left(\left(15^{2}+13^{2}-R^{2}\right) /(2 * 15 * 13)\right)$
Table Top

"Side" View

Solution:
 $\theta_{3}=\pi-\gamma$

Table Top

Summary of the Solution

Solution:

$$
\begin{aligned}
& \theta_{1}=\operatorname{atan} 2(y, x) \\
& d=z-10 \\
& R^{2}=x^{2}+y^{2}+d^{2} \\
& \alpha=\arcsin (d / R) \\
& \beta=\arccos \left(\left(R^{2}+15^{2}-13^{2}\right) /\left(2^{*} 15^{*} R\right)\right) \\
& \theta_{2}=\alpha+\beta \\
& \gamma=\arccos \left(\left(15^{2}+13^{2}-R^{2}\right) /\left(2 * 15^{*} 13\right)\right) \\
& \theta_{3}=\pi-\gamma
\end{aligned}
$$

We now have a solution that can calculate $\theta_{1}, \theta_{2}, \theta_{3}$ given ($x_{\text {grip }}, y_{\text {grip }}, z_{\text {grip }}$).

