Lab 3: DH Frames Guide

A guide to help you implement Forward Kinematics with DH frames

Updated: Spring 2019

What are Forward Kinematics?

- Forward Kinematics convert from joint angles to an end effector position.
- We are formulating the T_{0n} matrix (ie the homogeneous transform) of Frame n in Frame 0.

•
$$\mathsf{T}_{0n} = \begin{bmatrix} R_{0n} & d_{0n} \\ 0 & 1 \end{bmatrix}$$

- What we really care about is the translation vector, d_{0n} , in T_{0n} .
- Thus given the joint angles, we can find the end effector position.
- You might find this video helpful:
 - https://www.youtube.com/watch?v=rA9tm0gTln8

What are DH Frames?

- DH Frames are a way of assigning frames to the joints of robot manipulator
- Their restrictions allow for a minimal representation of each joint's position and orientation and development of the forward kinematics
- Spong's book explains the theory in detail (and I think clearly), but for our purposes all you need to be able to do is find the solution to the forward kinematics
- The physical understanding of a_i , α_i , d_i , and θ_i requires some theory, so I will avoid this if possible (<u>See Last Slide</u>).

What is a common normal?

- The term common normal is used frequently in this document
- Given two lines in space, the common normal is the line segment that is orthogonal to both of them
- If the lines intersect, it is trivial the "line" has length zero and occurs at the point of intersection
- If the lines are parallel, there are an infinite number of common normals
- If the lines are skew (not parallel, but never intersect), then there is a unique common normal

Let's start with this as our robot. Each cylinder represents a revolute joint. Thus, this is an RRRR robot. The numbers represent the length of the links and offsets. This is drawn in bad isometric form, so interpret each angle as a right angle.

The 6 Step Process

I suggest that you draw or print a copy of the robot diagram and follow along step-by-step. Following each explanation slide is the solution to that step. There is no single solution, but they should give the same final solution (up to an offset).

Step 1: Locate and label the joint axes $z_0, ..., z_{n-1}$

- Each z_i is aligned with:
 - The axis of rotation for revolute joints (direction is up to you)
 - The direction of extension for prismatic joints (direction is up to you)

 Z_0

I have included the dashed Z_0 lines to emphasize the axes extend to infinity. This helps us see intersections. I often draw my z axes very large and long. This can help with the final step.

Step 2: Establish the base frame

- Set the origin anywhere on the z_0 -axis
 - Pick a place that makes your coordinate system make sense
- Select an appropriate direction for x₀
 - Location is selected for convenience.
 - It is normally done with respect to your work surface.
- y₀ is not important, so it is best to leave it out so to avoid clutter (this is true for all the y.)
- For this example, I suggest you set it at the base of the first joint (ie table level)

For Steps 3 and 4, repeat for each joint 1,..., n-1

Step 3: Locating the origin o_i

- Locate the origin where the common normal to z_i and z_{i-1} intersect
- If *z_i* and *z_{i-1}* intersect, locate the origin at the intersection
- If *z_i* and *z_{i-1}* are parallel, locate the origin at any convenient position along *z_i*
- Repeat as needed

Step 4: Establish x_i

- x_i points along the common normal between z_i and z_{i-1} through o_i
- If z_i and z_{i-1} intersect, x_i points in the direction normal to the z_{i-1} z_i plane
- Repeat as needed

Step 5: Establish the end effector frame (n)

- There is a lot of flexibility here, but there are conventions used for grippers
- Make z_n parallel to z_{n-1}
- x_n needs to intersect z_{n-1}
- As you gain experience the right choice will be clear and you will be able to adjust to odd cases
- A "normal" robot would also make this more obvious than my silly creation

This is a standard set up, but doesn't work in this case.

Solution

Step 6: Create a table of DH parameters

- *a_i* Distance along *x_i* from the intersection of the *x_i* and *z_{i-1}* axes to *o_i*.
- *d_i* Distance along *z_{i-1}* from *o_{i-1}* to the intersection of the *x_i* and *z_{i-1}* axes. If joint *i* is prismatic, *d_i* is a variable.
- α_i The angle from z_{i-1} to z_i measured about x_i (use RHR).
- θ_i The angle from x_{i-1} to x_i measured about z_{i-1} (use RHR). If joint *i* is revolute, θ_i is a variable.

Joint	a _i	α,	d _i	θ _i
1				
2				
n-1				

Solution to the DH ParameterTable

- The notation Θ_1^* or d_1^* is typically used to denote variable parameters
- If you set the frames differently, the numbers will vary, but they will still be the same
- Choosing a different base frame is the biggest difference. It is completely arbitrary and just changes the zero location.

Joint	a _i	α _i	d _i	θ
1	0cm	$-\frac{\pi}{2}$	10cm	θ_1^*
2	15cm	0	8cm	θ_2^*
3	13cm	$\frac{\pi}{2}$	-7cm	θ_3^*
4	5cm	0	0cm	θ_4^*

Solution

Calculating T_{04}

- Once you have the parameters, you can calculate A₁, A₂, A₃, and A₄ using the formula pictured here
- A_i= T_{(i-1)i}
- Thus $T_{04} = A_1 A_2 A_3 A_4$
- You can do this by hand, but we will use *Robotica* in lab
- When complete, we will extract the translation vector

	$\int c_{\theta_i}$	$-s_{\theta}$, 0	(07	[1	0	0	0	1	
	s_{θ_i}	C_{θ_i}	0	(0	0	1	0			
=	0	0	1	(0	$\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$	0	1	d_i		
	0	0	0	-	1	0	0	0	1		
		- [1	0	0	a_i	Γ	1	0	0	0
		×	0					0	c_{α_i}	$-s_{\alpha_i}$	0
		×	0	0	1	0 0		0	s_{α_i}	c_{α_i}	0
			0	0	0	1		0	0	0	1
	$\begin{bmatrix} c_{\theta_i} \end{bmatrix}$	$-s_{\theta}$	$_{i}c_{\alpha_{i}}$		$s_{\theta_i}s$	s_{α_i}	a_i	ο.	1		
	s_{θ_i}		c_{α_i}			1918	a_i	1	-		
	0		α_i		co		d	2			
	0	,)		0		1				

On to the UR3!

- The Frames have been drawn for you!
- Use Step 6 to fill out a DH Parameter Table.
- Implement them in *Robotica* (Does the figure look correct?).
- Once you finished that, implement it in your code.

Optional Info

For those interested, this the physical interpretation of the parameters:

