# Lab 3: DH Frames Guide 

A guide to help you implement Forward Kinematics with DH frames

## Updated: Spring 2019

## What are Forward Kinematics?

- Forward Kinematics convert from joint angles to an end effector position.
- We are formulating the $\mathrm{T}_{0 n}$ matrix (ie the homogeneous transform) of Frame n in Frame 0.
- $\mathrm{T}_{\mathrm{on}}=\left[\begin{array}{cc}R_{0 n} & d_{0 n} \\ 0 & 1\end{array}\right]$
- What we really care about is the translation vector, $\mathrm{d}_{0 n}$, in $\mathrm{T}_{0 n}$.
- Thus given the joint angles, we can find the end effector position.
- You might find this video helpful:
- https://www.youtube.com/watch?v=rA9tm0gTln8


## What are DH Frames?

- DH Frames are a way of assigning frames to the joints of robot manipulator
- Their restrictions allow for a minimal representation of each joint's position and orientation and development of the forward kinematics
- Spong's book explains the theory in detail (and I think clearly), but for our purposes all you need to be able to do is find the solution to the forward kinematics
- The physical understanding of $a_{i}, \alpha_{i}, d_{i}$, and $\theta_{i}$ requires some theory, so I will avoid this if possible (See Last Slide).


## What is a common normal?

- The term common normal is used frequently in this document
- Given two lines in space, the common normal is the line segment that is orthogonal to both of them
- If the lines intersect, it is trivial - the "line" has length zero and occurs at the point of intersection
- If the lines are parallel, there are an infinite number of common normals
- If the lines are skew (not parallel, but never intersect), then there is a unique common normal


Let's start with this as our robot. Each cylinder represents a revolute joint. Thus, this is an RRRR robot. The numbers represent the length of the links and offsets. This is drawn in bad isometric form, so interpret each angle as a right angle.


## The 6 Step Process

I suggest that you draw or print a copy of the robot diagram and follow along step-by-step. Following each explanation slide is the solution to that step. There is no single solution, but they should give the same final solution (up to an offset).

## Step 1: Locate and label the joint axes $z_{0}, \ldots, z_{n-1}$

- Each $z_{i}$ is aligned with:
- The axis of rotation for revolute joints (direction is up to you)
- The direction of extension for prismatic joints (direction is up to you)



## Step 2: Establish the base frame

- Set the origin anywhere on the $z_{0}$-axis
- Pick a place that makes your coordinate system make sense
- Select an appropriate direction for $x_{0}$
- Location is selected for convenience.
- It is normally done with respect to your work surface.
- $y_{0}$ is not important, so it is best to leave it out so to avoid clutter (this is true for all the $y$.)
- For this example, I suggest you set it at the base of the first joint (ie table level)


For Steps 3 and 4, repeat for each joint 1,..., n-1

## Step 3: Locating the origin $o_{i}$

- Locate the origin where the common normal to $z_{i}$ and $z_{i-1}$ intersect
- If $z_{i}$ and $z_{i-1}$ intersect, locate the origin at the intersection
- If $z_{i}$ and $z_{i-1}$ are parallel, locate the origin at any convenient position along $z_{i}$
- Repeat as needed



## Step 4: Establish x

- $\mathrm{x}_{\mathrm{i}}$ points along the common normal between $z_{i}$ and $z_{i-1}$ through $o_{i}$
- If $z_{i}$ and $z_{i-1}$ intersect, $x_{i}$ points in the direction normal to the $z_{i-1}-z_{i}$ plane
- Repeat as needed



## Step 5: Establish the end effector frame (n)

- There is a lot of flexibility here, but there are conventions used for grippers
- Make $z_{n}$ parallel to $z_{n-1}$
- $x_{n}$ needs to intersect $z_{n-1}$
- As you gain experience the right choice will be clear and you will be able to adjust to odd cases
- A "normal" robot would also make this more obvious than my silly creation




## Step 6: Create a table of DH parameters

- $a_{i}$ - Distance along $x_{i}$ from the intersection of the $x_{i}$ and $z_{i-1}$ axes to $o_{i}$.
- $d_{i}$ - Distance along $z_{i-1}$ from $o_{i-1}$ to the intersection of the $x_{i}$ and $z_{i-1}$ axes. If joint $i$ is prismatic, $d_{i}$ is a variable.
- $\alpha_{i}$ - The angle from $z_{i-1}$ to $z_{i}$ measured about $x_{i}$ (use RHR).
- $\theta_{i}$ - The angle from $x_{i-1}$ to $x_{i}$ measured about $z_{i-1}$ (use RHR). If joint $i$ is
 revolute, $\theta_{i}$ is a variable.


## Solution to the DH ParameterTable

- The notation $\Theta_{1}^{*}$ or $d_{1}^{*}$ is typically used to denote variable parameters
- If you set the frames differently, the numbers will vary, but they will still be the same
- Choosing a different base frame is the biggest difference. It is completely arbitrary and just changes the zero location.

| Joint | $a_{i}$ | $\alpha_{i}$ | $d_{i}$ | $\theta_{i}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0 cm | $-\frac{\pi}{2}$ | 10 cm | $\theta_{1}^{*}$ |
| 2 | 15 cm | 0 | 8 cm | $\theta_{2}^{*}$ |
| 3 | 13 cm | $\frac{\pi}{2}$ | -7 cm | $\theta_{3}^{*}$ |
| 4 | 5 cm | 0 | 0 cm | $\theta_{4}^{*}$ |

## Calculating $\mathrm{T}_{04}$

- Once you have the parameters, you can calculate $A_{1}, A_{2}, A_{3}$, and $A_{4}$ using the formula pictured here
- $A_{i}=T_{(i-1) i}$
- Thus $\mathrm{T}_{04}=\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3} \mathrm{~A}_{4}$
- You can do this by hand, but we will use Robotica in lab
- When complete, we will extract the translation vector


## On to the UR3!

- The Frames have been drawn for you!
- Use Step 6 to fill out a DH Parameter Table.
- Implement them in Robotica (Does the figure look correct?).
- Once you finished that, implement it in your code.


## Optional Info

For those interested, this the physical interpretation of the parameters:


