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Projects

Stretchable fiber Gripper design for Pre-touch sen§|ng
to predict grip

optic sensors : berry pickin
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System integration Visual servoing with :
dynamic controller

L y |
of a Va .eNS arm on a gantry mounted / for the VaLeNS arm
a mobile platform BR2 arm
| (In progress)

Slip detection in
agricultural work (In
progress)

A N A A

* N. K. Uppalapati, B. T. Walt, A. Havens, A. Mahdian, G. Chowdhary, and G. Krishnan, “A Berry Picking Robot With A
Hybrid Soft-Rigid Arm: Design and Task Space Control,” in Robotics: Science and Systems Foundation, 2020.
* S. K. Kamtikar, S. Marri, B. T. Walt, N. K. Uppalapati, G. Krishnan, and G. Chowdhary, “Visual Servoing for Pose Control of

Soft Continuum Arm in a Structured Environment,” in IEEE Robotics and Automation Letters, 2022.




Presentation Overview

-

* Brief introduction of the paper

* Background of slip prediction and detection
* Walkthrough of the paper

* Discussion of the paper

* My research and connection to the paper
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Brief overview of the paper

To help create a generalizable approach, machine
learning is used to determine the slip state.

The results are applied to a simple controller to
demonstrate its effectiveness




Background of Slip

Grasp stability — the ability to
maintain the pose of the grasped
object despite disturbances

Gross slip — All contact points shift
or lose contact and cause the
grasped object to change pose

Incipient slip — Some contact
points shift or lose contact. This is
a precursor to gross slip

Grasp failure — Gross slip to the
point that the grasped object
leaves the gripper entirely



‘ Slip .
Detection

Three Components
of Slip Detection




Paper Structure
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\_

* Introduction
e Related Work

/- Learning to Predict Slip

* Explanation of the feature functions and ML methods

e Stability Control Using Slip Prediction
* Explanation of the stabilization method

* Experimental Evaluation
* Experimental Setup

K * Description and analysis of results

* Conclusion and Future Work




Contributions

Primary

A generalizable method
of slip prediction using a
tactile sensor which can
be used to stabilize a

previously unknown
object.




Related Work - Timeline of Shp Detection
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hand with automatic
proportional control of
prehension

1993 - Estimating
Friction Using Incipient
Slip Sensing During a
Manipulation Task
1998 - Detection of
incipient object slippage
by skin-like sensing and
neural network

processing /

30

25

20 Industrial applications

Focus on parameter estimation
15 Traditional signal processing
)
(
10

2006 1N
2007 N
2008 N

2001 1B
2002 B
2004 1B

1999 N
2003 B

(] (9]
2000 1
2005 D

2010 I
2011
2012 I

2013 N

2009 D

Transition to unstructured environments

— — Rise of NN

- Improving
tactile
sensors

)

"IN
|

Today’s
Paper |
n W
Lo | i
=)

~

o~

2014 I
2019 I

0
2018

Number of scientific publications each year with keyword ‘robot slip sensor’ 11



Related Work — Key background papers

Using robotic exploratory procedures to learn

the meaning of haptic adjectives (2013)

Feature functions
Chu et al. in the paper

Multimodal Tactile Sensor (2014)

Walkthrough of the BioTac sensor by the
creators

Human-Inspired Robotic Grasp Control With
Tactile Sensing (2011)
* Developed a similar stabilization scheme

Experimental Comparison of Slip Detection
Strategies by Tactile Sensing with the BioTac on
the DLR Hand Arm System (2014)

e Uses random forests



Learning to Predict Slip

-

: : Extract features from this
Collect tactile data with the )
) data with a feature
BioTac sensor

function: ¢(+)

Find a function, f(+), such

Fecore IS Used as the - that ¢, = f(cp(xl:t)) where

evaluation metric c; € {Cslip: Cnon—slip}
(ML Techniques)

Slip prediction is explored by adding a positive time step: T;

k Ct+te = f(‘P(x1:t)) €.8. C200 = f(fp(x1:190))




Overview of BioTac Sensor

Poc & Pyc - Measures
pressure 22 times a
A Fingernail sample

Pressure Sensor

Elastomeric . . . .
Skin * Biomimetic sensor to simulate
a fingertip’s sense of touch
. Integrated
Electronics * 3 kinds of sensors (44 data
Toc & Ty Measures 5y ) | di -
temperature and  [Thermistor \ points per sample reading):
temperature flow Impedance Sensing
Incompressible Earicdae Rigid Core e Can be read at 100Hz

Conductive Fluid E - 19 sensors

for localized
pressure

14



Feature Functions

Single element feature function
P (x1.6) = Xt

Time window feature function

(p(xl:t) = Xt—1:t
T is the size of the time window of past data

Delta feature function
@ (x1.¢) = [x¢, Axe]

Chu et al. feature functions
This is a collection of features developed
for tactile sensing of object properties



Classification

Support Vector Machine Random Forest
Separates categorical data with a hyperplane Uses the power of consensus to classify data
Works well with large feature sets * Works well with large feature sets
Works with smaller data sets * Robust to outliers
Lacks interpretability * Rejects noise well
Affected by noise * Lacks interpretability

* Complex to train
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Accuracy Evaluation

Precision Recall

: : Precision represents how well
F is selected as it balances P

e . it labels positives (sli
precision and recall P (slip)
correctly

 The harmonic mean of the | - _
* A high precision means it

two : :
rarely labels non-slip as slip

Recall represents the ability

to identify the positives (slip)

* A high recall means it labels
slip as slip well

precision - recall T true positives T true positives
precision + recall P true positives + false positives true positives + false negatives

Fscore =2
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Stability Control Using Slip Prediction

FN[t] + 5FN[t + 1], ifCt — CSlip
Fy[t], otherwise

Fylt + 1] =

0 — a small scaler value
Fy - Unit normal

18



Experimental Evaluation - Experimental Setup

Object is pressed
against the vertical
surface by the
BioTac finger.

The finger is moved away from the surface at a constant
speed. Gross slip occurs.

Grasp failure occurs when object is no longer held.




Experimental Evaluation - Results

Slip Detection Slip Prediction

A classifier for each object

A classifier for each object A single classifier for all
A single classifier for all objects

objects A single classifier for all

A single classifier for all objects — except one } StablllzatIOn

objects — except one | q : o
SVM vs Random Forest Only Random Forest * Asingle classifier for all

A EeerE B e Single and Delta Feature objects — except one
Spectral Slip Functions (Generalization)
Different t,for prediction Only Random Forest
Single and Delta Feature
Functions




Experimental Evaluation - Results

Slip Detection — Random Forest shows

promise to generalize
Results are generally strong, but depend on object
properties
Mean values are not significantly different.
Little difference in ‘per object’ and ‘all objects’
classifiers.

Stabilization — Successful, but

inconsistent results

Results show a lot of successes, but they depend
highly on the object

Slip Prediction — Results similar to

detection
Best results are with t,=10 (Smallest time step)

Object Characteristics

Easier: Box and tape
Harder: Ball and watering can



Conclusion

-~

* They successfully created a slip detector that generalized well to new

objects and were able to apply the detector to a controller that
stabilized an unstable grasp

e

\

Future Work N

 Measure other tactile events
* making/breaking contact with object
* making/breaking contact with support surface

e Auto-labelling the data /

~




Paper Discussion



My response

Feature Functions

Detection vs Prediction ;
(Chu’s Feature Functions)

Exploration of role tactile

Data Overload :
signals play



Impact of the paper

Factory ->
Living room

Tactile
Sensing
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Slip detection in an agricultural
setting



Motivation

o ¥**\/ideo Removed***

* Motivating video to show why slip detection in agriculture is
Important

* https://youtu.be/QsXXalffZ78

27


https://youtu.be/QsXXaIffZ78

Unigue Fruit Picking Issues

* Fruit are attached to the plant

* Fruit are often soft e Separation can be rather sudden
* Some fruit are very smooth

* Grow in wet/dusty environments

* Environment is cluttered
e Complex plucking motions

28



Goals

a

Generalizable
to grippers that
work in
agriculture

\

a

A

Can overcome
the unique
challenges of
agricultural

grasping




Experimental Setup - Sensors

Data collected
at 150Hz

XArm

custom two finger,
pneumatically —
actuated gripper

.

sense of
IR Sensor—  object

position
— IMU —

—_—

Accelerometer
Gyroscope

Cherry Tomato

30



Experimental Setup —
Data Collection

ﬁ Using the xArm, the target \- *** Video Removed™***
object is lifted vertically

* A pause is added to increase
data variation.

* The target is attached to the
workbench with a string causing
it to slip and the grasp to fail.

* A force sensor helps label data

* A magnetic sensor provides the
\target position. J

* Video to ease the explanation of
my research method.

* https://youtube.com/shorts/yD)J
OtUolLcPO



https://youtube.com/shorts/yDJOtUoLcP0

Experimental Setup — Analysis

e

Analysis is done via CNN and

LSTM

* CNN extracts data features

* LSTM learns temporal
relationship of the data

apwoed

albueedxen

apwoed

apwoed
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2 WLsT
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80% Training,
10% Validation,
10% Testing

A
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More training data is created by selecting small windows of data — from 200 to 1300 sets
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Results and Next Steps

@ h
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robustness )
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Paper’s Affect on My Research

p

Performing
stabilization

Feature
functions

34



Questions?



Additional Background



Human Touch Background

In particular, FA-I (fast-acting, _
type one) mechanoreceptors are strongly responsive to
localized slips produced by interactions between the

dermal _ _
papillae and the surface of an object, while deeper
FAIl mechanoreceptors are particularly receptive to

vibrations
propagating through the tissues of the hand, such as

those produced by a tool interacting with the
environment

FA-I (Fast-Adapting Type One)
FA-II (Fast-Adapting Type Two)
SA-| (Slow-Adapting Type One)
SA-II (Slow-Adapting Type Two)

Methods and Sensors
for Slip Detection in
Robotics: A Survey

TABLE 1. Basic properties of human mechanoreceptors.

Name Receptor Field size .oded quant
type (mm?) Encoded quantity
Meissner [ (fast) 12.6 High frequency
Corpuscles vibrations
(<50Hz) and
acceleration
Pacinian II (fast) 101 High frequency
Corpuscles vibrations (>50
Hz)
Merkel I (slow) 11 Static load, skin
Disks indentation
Ruffini I1 (slow) 59 Skin stretch,
Endings stretch direction



Support Vector Machine

* Attempt to split data into classes by T oA
observing which side of a hyperplane
they are on

* Hyperplane is found which maximizes
the margin between the support
vectors

* Works well when there is a clear
separation of data and with lots of
features

* Works poorly on large data sets and
lacks interpretability




Random Forests

e Numerous decision trees are

created that have low
correlation

e Using the power of consensus,

an outcome is predicted

* Works well with large feature
sets and is good at rejecting

outliers

e |s difficult to tune for best
results and has low
interpretability

https://towardsdatascience.c
om/understanding-random-
forest-58381e0602d2
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TABLE 1
Fycore FOR VARIOUS COMBINATIONS OF CLASSIFIER AND FEATURES. “PER OBJECT” DENOTES CLASSIFIERS TRAINED INDEPENDENTLY FOR EACH
OBJECT. “ALL OBJECTS” REFERS TO TRAINING A SINGLE, GENERAL CLASSIFIER ACROSS ALL OBJECTS. THE BEST PERFORMING METHOD IN EACH
COLUMN IS HIGHLIGHTED IN BOLD.

i . . F\'(-’Ol‘(’

e Clasaies - Mean | Ball Box Cup Marker Measuring Stick Tape Watering Can
Linear SYM  LP¢T object | 0.7451 | 0.6437 0.9765 0.7825 0.3258 0.8041 0.9697 0.7137
% all objects | 0.7341 [ 0.5065 0911 0.7114 0.5849 0.9163 0.9749 0.5339
¥ e ——s object [ 0.7224 [ 0.2266 0.9775 0.7741 0.6611 0.9647 0.9956 0.4571
all objects | 0.7502 | 0.2886 0.9777 0.7437 0.7049 0.9126 0.999 0.6247
Linear SVM  LP€T object | 0.7174 1 0.6121 0.9795 0.7827 0.1495 0.7824 0.9879 0.7278
(%, A%y] all objects | 0.7336 | 0.5289 0.908 0.7198 0.5532 0.9328 0.9774 0.5148
- s Dot | B object [ 0.7123 [ 0.2462 0.978 0.6922 0.6591 0.9287 0.9963 0.4854
all objects | 0.7097 |1 0.2163 0.9754 0.705 0.6621 0.9192 0.9927 0.4969
Linear SVM  LP€T object | 0.7174 | 0.4132 0.9671 0.7849 0.4524 0.7719 0.9069 0.7255
Xi— 1 all objects | 0.6571 | 0.461 0.8141 0.7016 0.3813 0.97 0.8181 0.4535
Paidcin poiea | Pe object | 0.7212 1 0.2428 0.9759 0.7297 0.7035 0.9446 0.9941 0.4579
all objects | 0.7151 [ 0.2402 0.9701 0.7067 0.686 0.9227 0.996 0.4841
Chu et al [Random Boress | 2L object | 0.6956 | 0.6053 0.9754 0.6862 0.6364 0.8666 0.6778 0.4219
' ~ [ all objects [ 0.5374 [ 0.4742 0.9417 0.7026 0.2966 0.7803 0.5181 0.0486
p Soectral Sli per object | 0.2751 | 0.1237 0.3586 0.2122 0.0796 0.3908 0.4039 0.357
ac =P P objects | 0.2565 | 0.0917 0.3207 0.2071 0.0791 0.3883 0.3714 0.3368
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TABLE 11
Ficore FOR VARIOUS CLASSIFIERS IN GENERALIZING TO PREVIOUSLY UNSEEN OBJECTS. THE BEST PERFORMING METHOD IN EACH COLUMN IS
HIGHLIGHTED IN BOLD.

- 5 g FS'('(H'(’
Beaitures Classilier Mean | Ball Box Cup Marker Measuring Stick Tape Watering Can
< Linear SVM 1 0.5141 | 0.5432 0.7866 0.4467 0.6384 0.6629 0.0193 0.5019
! Random Forest | 0.5936 | 0.0816 0.8596 0.6966 0.5414 0.6442 0.756 0.5757
(%, Ax;] Linear SVM | 0.4788 | 0.5639 0.7718 0.3756 0.5813 0.6453 0.0183 0.3953
d Random Forest | 0.6739 [ 0.1626 0.8922 0.7076 0.7052 0.7762 0.9021 0.5716
% Linear SVM | 0.4406 | 0.3997 0.0121 0.6089 0.4554 0.2432 0.843 0.5216
=% I'Random Forest | 0.6149 [ 0.0686 0.8235 0.697 0.6975 0.7906 0.709 0.518
Chu et al. | Random Forest | 0.2926 | 0.1925 0.8609 0.625 0.0898 0.229 0.0496 0.0017
Pl Spectral Slip | 0.2485 | 0.0917 0.2957 0.2059 0.0791 0.3758 0.3714 0.3202
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TABLE 111
Ficore FOR VARIOUS COMBINATIONS OF CLASSIFIER AND FEATURES WHEN PERFORMING PREDICTION. “PER OBJECT” DENOTES CLASSIFIERS TRAINED
INDEPENDENTLY FOR EACH OBJECT. “ALL OBJECTS” REFERS TO TRAINING A SINGLE, GENERAL CLASSIFIER ACROSS ALL OBJECTS. PREDICTION IS
DONE FOR 3 DIFFERENT VALUES OF Tr.

Features | 7; | Training Fscore . . .

~ Mean | Ball Box Cup Marker Measuring Stick Tape Watering Can

1o LPer object | 0.717 | 0.4255 0.9715 0.7324 0.5695 0.9538 0.9874 0.3792

all objects | 0.6806 | 0.2857 0.9233 0.7104 0.4165 0.896 0.9926 0.5395

% 15 LPer object [ 0.7047 | 0.1966 0.9675 0.7334 0.6563 0.9414 0.9862 0.4513

4 all objects | 0.6427 [ 0.2369 0.9532 0.7188 0.3081 0.8949 0.9255 0.4617

20 |PeT object | 0.6795 | 0.0938 0.9661 0.7274 0.6767 0.9241 0.9471 0.4211

all objects | 0.6989 | 0.4626 0.9359 0.6948 0.4034 0.8991 0.9732 0.5232

10 Lper object | 0.6797 | 0.0937 0.9685 0.7361 0.602 0.9163 0.9885 0.4528

all objects | 0.6743 [ 0.0865 0.9665 0.7149 0.6041 0914 0.9912 0.4429

%, A%] | 15 per object | 0.6918 | 0.1294 0.9615 0.7385 0.7228 0.866 0.9823 0.4422

o all objects [ 0.6727 | 0.32 09561 0.7119 0.4001 0.9101 0.9776 0.433

20 | Per object [ 0.6918 | 0.0972 0.964 0.7439 0.7145 0.9235 0.9721 0.4273

all objects | 0.6697 | 0.3275 0.9592 0.7161 0.4497 0.8983 0.9741 0.3626
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TABLE 1V
Ficore FOR VARIOUS CLASSIFIERS IN GENERALIZING TO PREVIOUSLY UNSEEN OBJECTS WHEN PERFORMING PREDICTION. THE BEST PERFORMING
METHOD IN EACH COLUMN IS HIGHLIGHTED IN BOLD.

F:?(‘()I't?

EEatEs: | 7 Mean | Ball Box Cup Marker Measuring Stick Tape Watering Can
10 ] 0.5266 [ 0.1741 0.4054 0.7017 0.4032 0.7101 0.6281 (0.6638
X; 15 0.564 |0.2315 0.5874 0.6507 0.2373 0.7819 0.7739 0.685
201 0.5962 | 0.1643 0.7936 0.669 0.4432 0.7558 0.759 0.5885
10| 0.6406 | 0.1943 0.8154 0.6965 0.5778 0.7678 0.9502 0.4819
(x;,Ax;] | 15]0.5562[0.2326 0.4383 0.6909 0.4278 0.8036 0.8765 0.4239
201 0.5337 | 0.1667 0.5861 0.6906 0.3724 0.7763 0.879 0.2649
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TABLE V
PERCENTAGE OF SUCCESSFUL GRIP STABILIZATION TRIALS USING OUR GRIP STABILIZATION CONTROLLER. ALL CONTROLLERS USED A RANDOM
FOREST SLIP CLASSIFIER TRAINED WITHOUT DATA FOR THE TEST OBJECT. BOLD VALUES INDICATE THE BEST PERFORMANCE FOR A GIVEN OBJECT.

' : X; X;, AX;
Test Object t,=0|t,=10| 7, =15|7,=20| ;=0 rf—.:[lo r,]=|5 T, =20
Ball 0% 0% 0% 100% 90% 0% 90% 80%
Box 100% | 100% | 100% | 100% | 100% | 100% 90% 100%
Cup 90% 60% 40% 70% 100% 10% 60% 60%
Marker 80% 40% 80% 10% 30% 10% 0% 100%
Measuring Stick | 20% 90% 60% 10% 20% 10% 0% 10%
Tape 10% 100% 80% 100% 30% 80% 100% 90%
Watering Can 10% 60% 100% 50% 30% 60% 60% 80%
Overall 44.28% | 64.28% | 65.71% | 62.85% | 57.14% | 38.57% | 57.14% | 74.28%
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Precision and Recall Example

e Situation: A computer vision algorithm wants to identify all the dogs
in a picture of cats and dogs

* Precision — Good precision is labelling only dogs as dogs (even if some
dogs are labelled cats) — no cats labelled dog.

* Recall = Good recall is finding all of the dogs (even if a few cats are
labelled dogs)



Precision and Recall

relevant elements

false negatives true negatives

true positives false positives

retrieved elements

How rmany retrieved
items are relevant?

Precision =

How many relevant
items are retrieved?

Recall =

46



Incipient Slip

I 47



grip

grip

mg

grip
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Fixing controller

» Simple — as force is known, set an upper bound

* May need some external signal to help with this

 Humans have eyes that can tell us when additional force is not working (think
of an oily, heavy object

* Could a secondary analysis of the same data help? Like a different method of
detection to verify it. At least if you could have a high confidence that slip is
not happening (but it that the same as having a high confidence that slip is
happening or does the confusion matrix play a role here...)

* Create a loosening effect — after so long without slip, slowly loosen
the force until slip is predicted again — doesn’t fix unboundedness



SVM Equation Notes

Paper
A classifier Regression (also Regression, but
should be classifier)

g(x) = sgn (W.x + wy) i k
— sgn (in,y,(x,.x) ! uu,) . F(x) = Z B:k(x,x;) + wp. f(Z) - Z la(z ' IZ) +b

1=1 .
=1 i=1



Authors

* Filipe Veiga (Student)
* Focus is on Robot learning — especially in manipulation and tactile sensing
« This and follow up are only slip based papers

« Herke Van Hoof (Student?)

« Focus is on Robot learning — especially RL
* Number of manipulation papers

» Jan Peters
* Focus is on Robot learning — especially RL

« Tucker Hermans

« Focus is on manipulation, motion planning and learning
« CS/Al focus



LSTM

Output Gate
Forget Gate

- State

Input Gate @ Output @
\ t t
~ N | Wi 4@ Y
- —® ® >
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—» Memory Cell
u y le y,

®
o

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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A mechanical hand with automatic
proportional control of prehension (1967)

* A technical note

* Developed for prosthesis

e Uses a piezo crystal (from a record player) to detect vibration due to
slip

* Uses same basic control scheme as today’s paper

e Converts vibration to discrete pulses to drive the motor to close the
fingers more.



Estimating Friction Using Incipient Slip
Sensing During a Manipulation Task

* Uses an accelerometer to measure small vibrations during slip

* A second accelerometer is used to reject vibrations not related to the
slip (Such as tapping the testing rig)



Detection of incipient object slippage by skin-
Ike sensing and neural network processing

* First use of a NN for slip detection
e Uses a multilayer perceptron

e Authors note the lack of quality tactile sensors
e Used simulation instead
* Do a real test, but note the poor results due to the small, 1D sensor.



Force - N

Rigid Mount

Force Reading force_data 0110.csv

—— Force
20 A
15 -
10 -
05 -
0.0 |
0 1 2 3 4 5 5 7
Time -s
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Common Sensors

Can | make this slide more
interesting with some images?

* Force

* Vibration
* Piezoelectric and acoustic signals
* Allows use of FFT, STFT, DWT and other audio signal techniques such as filters

e Optical

* Velocity/Acceleration — using Laser Doppler Velocimeter,
accelerometer (close connection with vibrations)

* Thermal
* Magnetic
 Tactile arrays



Common Analysis Methods

* Estimation of Physical properties — forces, friction, slip margin
* Signal Processing - FFT/STFT/DWT/Filters
* ML

 Neural Network
e SVM
e Random Forrests

* Gaussian Processes Can | make this slide more
* LSTMs interesting with some images?

 Computer Vision techniques
* Using actual images
* Treating data like images



Human-Inspired Robotic Grasp Control With
Tactile Sensing (2011)

e Uses bio-inspired tactile sensors mounted on a PR2 robot
e Source of control scheme

* Looks at the full grasping timeline



Using robotic exploratory procedures to learn
the meaning of haptic adjectives (2013)

* BioTac sensors are used to apply adjective labels to objects
* Adjectives such as: rough, solid, thin, cool,...

* Feature functions are used to extract features from raw data and aid
in learning

* Functions are designed to focus on certain aspects, such as:
 Compliance
* Texture
 Thermal conductivity

* Referenced as Chu et al. in the paper



Experimental Comparison of Slip Detection
Strategies by Tactile Sensing with the BioTac on

the DLR Hand Arm System (2014)

e Objects are lifted by a two-finger gripper with BioTac sensors fitted.
The object can be caused to slip by a wire attached to a motor.

* Explores 3 slip detection strategies
* Model based via friction cone
 Signal processing using a bandpass filter
* Learning based — Using a Random Forest

* Also uses the same basic control scheme as the reviewed paper



Multimodal Tactile Sensor (2014)

* Detailed walkthrough of the BioTac sensor by the creators.

* Gives some basic validations of its ability to:
* Measure force
* Sense vibration
» Differentiate texture
* Detect slip (with a bandpass filter)
* Sense temperature and heat flow



